The multifactorial origins of hypertension

Arterial hypertension is not a disease in itself but rather a powerful risk factor for cardiovascular and renal disease. The risk associated with hypertension is graded and continuous, starting with blood pressure levels well below the clinically useful but arbitrary definition of hypertension given by the guidelines for the physician. While it is true that the higher the blood pressure the greater the individual relative risk of cardiovascular and renal complications, on epidemiological grounds and with regard to public health, the population attributable risk is of even greater interest. In fact, by multiplying the relative risk associated with a certain blood pressure level by the number of people exposed to that level, it may be found that the large number of people affected by the mildest forms of hypertension or just having high-normal blood pressure levels contribute to a large proportion of cardiovascular morbidity and mortality. This is, for instance, the lesson coming from the analysis carried out by the Multiple Risk Factor Intervention Trial Investigators. Accordingly, the study of the genetic causes of hypertension should not focus solely on patients and families with severe forms of hypertension but should aim to unveil the genetic contribution to population blood pressure variability all over the blood pressure range.

The growing interest in a number of genes coding for proteins involved at various levels in the metabolic handling of dietary sodium chloride has to be seen within this intellectual framework.

Dietary salt intake as a risk factor for hypertension

The relationship between dietary salt and blood pressure is supported by overwhelming evidence from epidemiological, clinical and experimental studies. The earliest observations on this subject are found in the history of Chinese medicine and date back to about one thousand years BC. A dramatic switch from a low-salt to a progressively salt-enriched diet is believed to have taken place when mankind made the transition from hunting and collecting food to food producing. The agricultural man learned to use salt to preserve food, particularly meat, with sodium chloride acting as a dehydrator and a preservative against bacterial growth.

These anthropological considerations led to the concept of maladaptation of blood pressure homeostasis in the face of a major environmental modification which occurred over a relatively short span of human evolution. It is conceivable that a genetic array that had been biologically appropriate for what used to be a low-salt environment became unfavorable once the dietary intake of salt started to rise, in as much as the prevailing physiological challenge for the kidney was no longer conservation but rather quantitative elimination of excess salt.

Although the clinician’s interest in dietary salt intake focuses on its role as a determinant of arterial hypertension, the issue of excess salt intake contribution to population variability of blood pressure is scientifically more sound and far more attractive for the clinical geneticist.
Definition and determinants of salt-sensitivity

Salt-sensitivity can be defined as the measurable effect of a sodium chloride load on individual blood pressure levels. The interest in salt-sensitivity stems from the observation that the effect of sodium chloride on blood pressure is heterogeneous within the hypertensive population and also among normotensive individuals. Similarly to what has been said for blood pressure, it is quite arbitrary to classify an individual as salt-sensitive or salt-resistant for the very reason that the blood pressure response to a sodium load (or to salt restriction) follows a typical Gaussian curve. Thus, the classifications adopted in most published clinical studies, based on a pre-defined cut-off, fail to provide the correct perception of a truly quantitative phenomenon. Several studies have been conducted in an attempt to identify predictors of blood pressure salt-sensitivity, for the assessment of which these studies have relied on either short-term dietary trials or acute sodium loads and volume expansion maneuvers.

Although several organs are presumably involved in the blood pressure response to salt, the kidney is both the final track and the fine modulator of the response. According to the well known theory proposed by De Wardener et al., sodium-dependent hypertension is the consequence of an inherited and/or acquired inability of the kidney to excrete a sodium load. In a high sodium environment, the renal defect would determine an increase in extracellular fluid and intrathoracic blood volume that in time may induce an increase in blood pressure.

A number of factors are able to impair the natriuretic ability of the kidney and shift the pressure-natriuresis curve to the right. Hyperactivity of the sympathetic nervous system or of the renin-angiotensin-aldosterone axis, insulin resistance, reduced production of atrial natriuretic peptides and other natriuretic substances, functional alterations of renal tubular ion transport systems, are among the factors involved in renal sodium handling acknowledged as potential acquired contributors to salt-sensitivity of blood pressure. The excess sympathetic activity associated with stressful lifestyles and the reduced sensitivity to insulin associated with overweight or obesity are good examples of these mechanistic pathways. Excess noradrenaline released at the sympathetic end-terminals within the kidney as well as the hyperinsulinenia associated with insulin resistance have the power to enhance tubular sodium reabsorption and shift the pressure-natriuresis curve to the right.

Table I. Candidate genes for arterial hypertension.

<table>
<thead>
<tr>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiotensin-converting enzyme</td>
</tr>
<tr>
<td>Angiotensinogen*</td>
</tr>
<tr>
<td>Angiotensinogen*</td>
</tr>
<tr>
<td>Angiotensin II type 1 receptor</td>
</tr>
<tr>
<td>Atrial natriuretic peptide*</td>
</tr>
<tr>
<td>Natriuretic peptide clearance receptor*</td>
</tr>
<tr>
<td>Aldosterone synthase</td>
</tr>
<tr>
<td>Na+/K+ ATPase*</td>
</tr>
<tr>
<td>β-subunit epithelial sodium channel*</td>
</tr>
<tr>
<td>α-adducin*</td>
</tr>
<tr>
<td>α1-adrenergic receptor*</td>
</tr>
<tr>
<td>α2-adrenergic receptor*</td>
</tr>
<tr>
<td>β1-adrenergic receptor*</td>
</tr>
<tr>
<td>β2-adrenergic receptor*</td>
</tr>
<tr>
<td>Glucocorticoid receptor*</td>
</tr>
<tr>
<td>Insulin receptor*</td>
</tr>
<tr>
<td>Glucagon receptor*</td>
</tr>
<tr>
<td>Lipoprotein lipase*</td>
</tr>
<tr>
<td>Pancreatic phospholipase*</td>
</tr>
<tr>
<td>Growth hormone*</td>
</tr>
<tr>
<td>Complement C3P1</td>
</tr>
<tr>
<td>Type 1A dopamine receptor*</td>
</tr>
<tr>
<td>Endothelial nitric oxide synthase*</td>
</tr>
<tr>
<td>SA gene*</td>
</tr>
<tr>
<td>G-protein β3 subunit*</td>
</tr>
<tr>
<td>Prostacyclin synthase*</td>
</tr>
<tr>
<td>Hapl-haptoglobin*</td>
</tr>
</tbody>
</table>

* genes more likely to be involved in the salt-sensitivity of blood pressure.

Genetic versus acquired causes of salt-sensitivity and their interaction

An intriguing question one has to ask is to what extent these factors are acquired causes of impairment in renal natriuretic capacity, as it appears, and to what degree they are under the influence of genetic variation. The Trp64Arg polymorphism in the beta3-adrenergic receptor, for instance, is associated with predisposition to abdominal adiposity, hypertension and possibly insulin resistance. In turn, the reduction in renal sodium excretory ability consequent to insulin resistance, hyperinsulinenia and sympathetic activation may be seen, at least to some extent, as genetically determined.

Hypertension due to single gene abnormalities is a rare condition; nevertheless, a number of monogenic forms following a Mendelian type of inheritance have been described. Classic linkage analysis has located the genes implicated in glucocorticoid-remediable aldosteronism, in Liddle’s syndrome and in the apparent mineralocorticoid excess syndrome. It is noteworthy that all these forms of monogenic hypertension, due to well characterized genetic abnormalities, are related to an altered renal sodium handling. Much more frequently arterial hypertension is caused by the synergistic action of multiple environmental and genetic factors. Thus, its phenotypic expression derives from the interaction between a large number of susceptibility genes (polygenes) of variable penetrance and various other influences partly related to lifestyle (e.g. nutritional factors, physical activity, etc.). Considerable and growing efforts are being made in order to identify candidate genes; as a consequence, the number of polymorphic variants of genes possibly implicated in high blood pressure is continuously in-
Increasing. Many of these variants are associated with a functional alteration.

The interaction between functional mutations associated with altered renal sodium handling and changes in dietary sodium intake represents a paradigm for the study of gene-environment interaction. Figure 1 shows a schematic frame of the complex multifactorial interactions between genes, environment, demographic and metabolic factors implicated in salt-sensitivity of blood pressure. A reasonable working hypothesis is that each one of a number of less severe mutations in genes directly or indirectly related to renal sodium handling gives a contribution to the individual blood pressure sensitivity to changes in sodium intake.

Candidate genes possibly contributing to salt-sensitivity are listed in Table I [18-46]. Attention has been focused on genes involved in the regulation of the renin-angiotensin axis, in transmembrane ion exchange, in the modulation of sympathetic activity and in other metabolic pathways relevant to sodium handling. In a study of over 1500 subjects participating in the phase II of the Trials of Hypertension Prevention, Hunt et al. [21] showed that individuals homozygous for a mutation in the angiotensinogen gene had a significantly better response to sodium restriction as compared to individuals with the wild-type genotype. The frequency of the insertion allele of the angiotensin-converting enzyme gene was higher in salt-sensitive than in salt-resistant Japanese hypertensive patients [19]. An increased frequency of polymorphic variants of the atrial natriuretic peptide gene has been identified among hypertensive African-Americans, supporting the hypothesis that a deficient atrial natriuretic peptide secretion contributes to elevated salt-sensitivity in people of African descent [23]. Recently, Sarzani et al. [24] detected, in a population of obese hypertensive Caucasian patients, a biallelic (A/C) polymorphism at position 55 of the promoter of the natriuretic peptide clearance receptor: the C(-55) variant was associated with lower atrial natriuretic peptide levels and higher blood pressure levels.

The association between polymorphic variants of α- and β-adrenergic receptors and salt-sensitivity has been the object of investigation. A linkage between the β2-adrenergic receptor locus and the blood pressure response to sodium load was suggested by Svetkey et al. [33] in a study on Afro-American families; moreover, Lockette et al. [32] showed a significant difference in a restriction fragment length polymorphism for the β2-adrenoceptor between black and white hypertensive patients. In a large population sample of middle-aged men (The Olivetti Prospective Heart Study), we have recently observed that the carriers of the Trp64Arg polymorphism of the β2-adrenergic receptor had significantly higher levels of plasma aldosterone in comparison with the carriers of the wild type Arg64Arg allele [33]. In the same population sample, we have also found that the Gly40Ser mutation of the angiotensin-converting enzyme gene was associated with significantly increased sodium reabsorption at the proximal tubule and high blood pressure (Strazzullo P. et al., unpublished data).

Bianchi and coworkers [29,30] have reported convincing evidence for a role of genetic variants of the α-adducin gene associated with functional alterations of the Na+K+ pump, higher blood pressure and enhanced sensitivity to diuretics. Evidence is also accumulating in favor of a significant contribution by variants of the epithelial sodium channel gene at least in some populations [28], leading to the conclusion that the renal tubule might be the site of multiple dysfunction potentially relevant to salt-sensitivity of blood pressure.

This very brief and inevitably incomplete review of the multifaceted background of blood pressure salt-sensitivity supports the contention of a complex interaction between a number of genes influencing renal sodium handling and several metabolic, nutritional and neurohormonal factors converging on the same final pathway [47]: the final result of these multiple interactions is an impairment in the natriuretic ability of the kidney with a resultant shift in the pressure-natriuresis curve to the right [48]. The elucidation of the precise role of the gene products involved in this process is a promising approach to the comprehension of the molecular bases of blood pressure regulation.

Figure 1. Interaction between genetic and acquired factors associated with salt-sensitivity of blood pressure.
References


6. Huang Ti Nei Ching Su Wen (1000 BC) from the translation by Wang Ping (AD 762).


