The risks and benefits of exercise: do we have a finite number of heartbeats?

Kenneth L. Baughman
Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA

The risks and benefits of exercise will be reviewed. Exercise does appear to prolong life in those who exercise regularly. Unfortunately exercise may trigger acute ischemic events and sudden cardiac death. The physiologic effects of acute and chronic exercise will be examined particularly as these relate to cardiovascular testing in endurance athletes.

Paffenbarger et al. evaluated over 10,000 Harvard alumni comparing overall mortality with physical activity. There was a clear cut stepwise decrease in mortality with increase in expenditures of energy, as measured by kilocalories per week. Those who were previous athletes and stopped exercising were at the highest risk. Lifelong athletes have the lowest risk, but were followed closely by those who assumed an active lifestyle in later years. Sandvik et al. similarly evaluated nearly 2,000 Norwegian middle-aged men with baseline tests assessing fitness with long-term follow-up. There was a graded inverse association between quartiles of fitness and mortality, as well as with risk factors such as blood pressure and total cholesterol. Ekelund et al. evaluated over 4,000 middle-aged men, and demonstrated an inverse relationship between quartiles of fitness based on an exercise stress test and not only mortality but cardiovascular-related mortality. Lakka et al., following over 1,400 middle-aged men for nearly 5 years, demonstrated an inverse correlation between hours of conditioning per week as well as maximal oxygen consumption and relative hazard of death. The only large-scale observational study including women was performed by Blair et al.: 25,000 men and over 7,000 women underwent examination and exercise stress test with subsequent long-term follow-up. Low fitness was a significant relative risk factor for both populations (male and female), and carries a higher relative risk of death than smoking, hypertension, or hypercholesterolemia in women. These data have been so overwhelming that the NIH Consensus Conference agreed that children and adults should set a goal of accumulating at least 30 min of moderate intensity physical activity on most, and preferably, all days of the week.

As Pheidippides demonstrated, there are risks of death with exercise. Thompson et al. have calculated that there is a 7-fold increase in the risk of death during jogging compared with sedentary controls. Analysis of those reported to have died suddenly while jogging reveals that approximately half had a history of cardiovascular disease or prodromal symptoms. In addition, most of those affected had significant risk factors including continued tobacco abuse, hypercholesterolemia, prior confirmed myocardial infarction, or a prior family history of early cardiovascular disease. Mittleman et al. demonstrated that physical exertion can clearly trigger myocardial infarction. The risk appears to be increased in individuals who are sedentary and decreases with habitual physical activity. It is assumed that exercise likely triggers acute plaque rupture due to underlying coronary atherosclerosis and the hemodynamic burden of increased physical activity.

Acute exercise increases venous return due to intrathoracic pressure and increased muscular contraction (milkling of dependent veins). Left ventricular volume increases as does cardiac output due to the Starling effect. Sympathetic tone also increases, which increases contractility and lusitropy. Chronic exercise increases muscle capillary beds, muscle enzyme activity, left ventricular vol-
ume, and left ventricular wall thickness. Decondition-
ing can occur within 2-3 weeks of discontinuation of ex-
ercise. Pelliccia et al. have shown that a left ventricular wall thickness in excess of 13 mm is very uncommon, even in highly trained competitive endurance athletes. Endurance training does have a dramatic effect on the electrocardiogram. Virtually all trained athletes have intrinsic bradycardia and an increased propensity to si-
inus arrhythmia, first degree heart block, and sinus paus-
es. In addition, left ventricular hypertrophy is common, right ventricular hypertrophy not uncommon, and early repolarization found in nearly 50%. ST segment changes are not found, even in endurance athletes.

In addition to lowering blood pressure, exercise has beneficial effects on other cardiovascular risk factors. Williams has demonstrated in women and men end-
durance runners that there is an inverse correlation be-
tween HDL and distance run per week. Endurance ath-
letes have lower total cholesterol, triglycerides, LDL and VLDL and significantly higher HDL. In addition to lower levels of cholesterol, there appears to be an increase in reverse cholesterol transport from cells in athletes. This would further lower the cellular cholesterol levels. Ex-
ercise does, however, appear to increase the platelet count and, potentially, the platelet adhesiveness. Fibri-
nolysis is increased.

There is evidence in animals and humans that exercise increases the capability for coronary vasodilation. In animal models this appears to be due to an enhanced nitric oxide-dependent vasodilation, likely due to in-
creases in nitric oxide production and synthase.

There is a multitude of proposed psychological ben-
etits of exercise, likely enhanced by beta endomor-
phines. Unfortunately, there are relatively few con-
trolled trials proving these benefits. There is also pro-
posed psychological harm from exercise including comp-
pulsiveness, chronic fatigue, over-competitiveness, and self-centeredness.

In brief, exercise clearly prolongs life. There are risks related to exercise, particularly in those who have been habitually sedentary. In this population, exercise must be undertaken gradually and if significant risk factors are present, individuals should undergo cardio-
vascular screening including an exercise stress test be-
fore initiating a vigorous program. Highly-trained en-
durance athletes have abnormalities of their noninvasive cardiac parameters including electrocardiogram, Holter and echocardiogram. Chronic exercise clearly improves multiple risk factors for cardiovascular mortality in-
cluding weight, blood pressure, insulin sensitivity, thrombosis, and lipid levels.

References

- Baughman KL. The risks and benefits of exercise. Third An-
nual Cardiovascular Symposium with the Experts, 1998.
- Blair SN, Kampert JB, Kohl HW, et al. Influences of car-
- Ciampricotti R, Deckers JW, Taverne R, et al. Characteristics of conditioned and sedentary men with acute coronary syn-
- Fletcher GF. The antiatherosclerotic effect of exercise and de-
- Gupta AK, Ross EA, Myers JN, et al. Increased reverse cho-
- Mittleman MA, Maclure M, Tofler GH, et al. Triggering of acute myocardial infarction by heavy physical exertion: pro-
- Paffenbarger RS Jr, Hyde RT, Wing AL, et al. The associa-
- Pelliccia A, Maron BJ, Spataro A, et al. The upper limit of physiologic hypertrophy in highly trained elite athletes. N En-
- Sandvik L, Eriksen J, Thaulow E, Eriksen G, Mundal R, Ro-
- Thompson PD, Stern MP, Williams P, et al. Death during jog-
ning or running: a study of 18 cases. JAMA 1979; 242: 1265-
7.
- Wang JS, Jen CJ, Kung HC, et al. Different effects of stren-
- Williams PT. High-density lipoprotein cholesterol and other 
- Zehender M, Meinertz T, Keil J, et al. ECG variants and cardiac arrhythmias in athletes: clinical relevance and prog-